skip to main content


Search for: All records

Creators/Authors contains: "Lee, Abraham P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Autologous cell therapy depends on T lymphocyte expansion efficiency and is hindered by suboptimal interactions between T cell receptors (TCR) and peptide‐MHC molecules. Various artificial antigen presenting cell systems that enhance these interactions are often labor‐intensive, fabrication costly, highly variable, and potentially unscalable toward clinical setting. Here, 3D centrifugation‐enabled priming of T cell immune‐synapse junctions is performed to generate tight T cell–Dynabead aggregates at a rate 200‐fold faster than that of conventional 24‐h bulk shaking. Furthermore, by forming T cell–Dynabead aggregates in the starting culture, two‐ to sixfold greater T cell expansion is achieved over conventional T cell expansion for cancer patient‐derived primary T cells while limiting over‐activation. Creating 3D T cell–Dynabead aggregates as the “booster” material enables highly efficient polyclonal T cell expansion without the need for complex surface modification of artificial antigen‐presenting cells (APCs). This method can be modularly adapted to existing T cell expansion processes for various applications, including adoptive cell therapies (ACTs).

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Beskok, A. (Ed.)

    Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h−1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h−1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h−1 (>150,000 cells min−1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Wheeler, A. (Ed.)

    We introduce μVAST, a high-throughput acoustic microstreaming platform using second-order microstreaming to induce fluid transport and measure the viscosity of 16 samples, automating process flows in drug development, materials manufacturing and production.

     
    more » « less
    Free, publicly-accessible full text available May 30, 2024
  4. null (Ed.)
    We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells ( i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8 + T cells expressing programmed cell death protein 1 (PD1), higher number of CD4 + T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment. 
    more » « less
  5. null (Ed.)
    We present an integrated microfluidic chip capable of label-free isolation of three major subpopulations of white blood cells (WBCs) (lymphocytes, monocytes and granulocytes) from undiluted whole blood. The proposed system accomplishes 3-part differential sorting of WBCs by: (1) On-chip lysis of RBCs from the blood sample, and (2) Downstream isolation of lymphocytes, monocytes and granulocytes using dielectrophoresis (DEP) technology. 
    more » « less
  6. Abstract

    The vascular network of the circulatory system plays a vital role in maintaining homeostasis in the human body. In this paper, a novel modular microfluidic system with a vertical two-layered configuration is developed to generate large-scale perfused microvascular networks in vitro. The two-layer polydimethylsiloxane (PDMS) configuration allows the tissue chambers and medium channels not only to be designed and fabricated independently but also to be aligned and bonded accordingly. This method can produce a modular microfluidic system that has high flexibility and scalability to design an integrated platform with multiple perfused vascularized tissues with high densities. The medium channel was designed with a rhombic shape and fabricated to be semiclosed to form a capillary burst valve in the vertical direction, serving as the interface between the medium channels and tissue chambers. Angiogenesis and anastomosis at the vertical interface were successfully achieved by using different combinations of tissue chambers and medium channels. Various large-scale microvascular networks were generated and quantified in terms of vessel length and density. Minimal leakage of the perfused 70-kDa FITC-dextran confirmed the lumenization of the microvascular networks and the formation of tight vertical interconnections between the microvascular networks and medium channels in different structural layers. This platform enables the culturing of interconnected, large-scale perfused vascularized tissue networks with high density and scalability for a wide range of multiorgan-on-a-chip applications, including basic biological studies and drug screening.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)